BEDIENUNGSANLEITUNG ControlPlex® Controller EM12D-TMB

1. Allgemeine Informationen	4
2. Allgemeine Beschreibung 2.1 Aufbau des Gesamtsystems 2.2 Abmessungen des Buscontroller EM12D-TM 7 2.3 Anzeigeelemente und Anschlüsse	(1B
3. Montage und Installation 3.1 Montage des Systems 3.2 Stromversorgung des Modbus RTU Controllers 3.3 Anschlüsse für die Spannungsversorgung und den ELBus® 3.3.1 Anschlussbuchsen für die Modbus RTU Kommunikation, Anschlussbuchse X81/ X82 3.3.2 Darstellungen des Fertigungsdatums der Device ID und des Revisionsstands de Software	8 nd 8 8
4. Betriebsarten des Device EM12D-TMB	10 10 10 10 10 10
	•

5.	Grundfunktionalitäten des Gesamtsystems 13 5.1 Interne Zykluszeiten
6.	Kommunikation über Modbus RTU
7.	Überblick der Modbus Register
	Kanäle über PLCLock im EMD12D 28

7.3.10 Gerätetype des Einspeisemoduls
EM12D-TMB
7.3.11 Seriennummer EM12D-TMB 29
7.3.12 Hardwareversion EM12D-TMB 30
7.3.13 Softwareversion EM12D-TMB 30
7.3.14 Application Specific Tag EM12D-
TMB 30
7.3.15 Nennstrom REX12D/REX22D 31
7.3.16 Grenzwert Laststrom
REX12D/REX22D31
7.3.17 Kanaldiagnose REX12D/REX22D . 31
7.3.18 Fehlerspeicher REX12D/REX22D . 32
7.3.19 Auslösezähler REX12D/REX22D 33
7.3.20 Auslösegrund REX12D/REX22D 33
7.3.21 Mittelwert Spannung
REX12D/REX22D
7.3.22 Maximum Spannung
REX12D/REX22D34
7.3.23 Minimum Spannung
REX12D/REX22D34
7.3.24 Mittelwert Strom REX12D/REX22D35
7.3.25 Maximum Strom REX12D/REX22D
35
7.3.26 Minimum Strom REX12D/REX22D 36
7.3.27 Gerätetyp REX12D/REX22D 36
7.3.28 Hardwareversion REX12D/REX22D
38
7.3.29 Softwareversion REX12D/REX22D38
7.3.30 Seriennummer REX12D/REX22D . 39

	7.3.31 Aktionsbetehle Kanal	
	REX12D/REX22D	40
3.	Anhang	41
	8.1 Abbildungsverzeichnis	
	8.2 Tabellenverzeichnis	41

1. ALLGEMEINE INFORMATIONEN

Sicherheitshinweise

Diese Bedienungsanleitung gibt Hinweise auf mögliche Gefahren für Ihre persönliche Sicherheit und die Vermeidung von Sachschäden. Die folgenden Sicherheitssymbole sollen den Lesenden auf die Sicherheitshinweise in dieser Bedienungsanleitung aufmerksam machen.

Gefahr!

Es besteht Gefahr für Leben und Gesundheit, wenn die folgenden Sicherheitsvorkehrungen nicht eingehalten werden.

Warnung!

Es besteht Gefahr für Maschinen, Materialien oder Umwelt, wenn die folgenden Sicherheitsvorkehrungen nicht eingehalten werden.

Anmerkung

Weitere Informationen zum besseren Verständnis.

Vorsicht!

Elektrostatisch empfindliche Geräte (ESD). Geräte dürfen nur durch den Hersteller geöffnet werden

Entsorgungsrichtlinien

Verpackungen sind recyclingfähig und sollen grundsätzlich der Wiederverwertung zugeführt werden.

Qualifiziertes Personal

Diese Bedienungsanleitung darf ausschließlich von qualifiziertem Personal verwendet werden.

Dies sind Personen, die aufgrund ihrer Ausbildung und Erfahrung befähigt sind, beim Umgang mit dem Produkt auftretende Risiken zu erkennen und entsprechende Gefährdungen zu vermeiden. Diese Personen müssen gewährleisten, dass der Einsatz des beschriebenen Produktes allen Sicherheitsanforderungen, sowie den geltenden Bestimmungen, Vorschriften, Normen und Gesetzen entspricht.

Verwendung

Das Produkt unterliegt einer ständigen Weiterentwicklung. Daher kann es zu Abweichungen zwischen dem vorliegenden Produkt und der Dokumentation kommen. Diese Abweichungen werden durch eine regelmäßige Überprüfung und der sich daraus ergebenden Korrektur in den folgenden Ausgaben beseitigt. Wir behalten uns das Recht vor, Korrekturen ohne vorherige Ankündigung durchzuführen. Fehler und Auslassungen sind vorbehalten.

Auslieferzustand

Das Produkt wird mit einer festgelegten Hardware- und Softwarekonfiguration ausgeliefert. Änderungen, die über die dokumentierten Optionen hinausgehen, sind unzulässig und haben einen Haftungsausschluss zur Folge.

2. ALLGEMEINE BESCHREIBUNG

Die Anforderungen im Bereich des Anlagenbaus und der Gebäudeautomatisierung werden immer größer. Im Rahmen von Effizienzsteigerung und Kostenreduktion gewinnen Anlagentransparenz, Fernwartbarkeit und der Remote Zugriff eine immer höhere Bedeutung. Die Erhöhung der Anlagenverfügbarkeit durch eine frühzeitige Benachrichtigung bei möglichen Störungen sowie eine schnelle Reaktion auf bestehende Probleme spart Geld und erhöht die Stabilität des Fertigungsprozesses.

Mit den intelligenten Absicherungssystemen REX12D und REX22D und dem Schnittstellenmodul EM12D-TMB liefert die Firma E-T-A die ideale Lösung für die unterschiedlichen Anwendungsbereiche. Es verbindet die bewährte Qualität des DC 24V Überstromschutzes mit der Kommunikationsfähigkeit an übergeordnete Bussysteme. Dieses ermöglicht die komplette Transparenz der DC 24V-Stromversorgung und liefert somit die notwendigen Informationen für einen stabilen Fertigungsprozess in diesem Anlagenbereich. Eine dieser Informationen ist die permanente Übertragung der Statusinformationen jedes einzelnen Sicherungsautomaten. Darüber hinaus werden der aktuelle Laststrom des Schutzschalters und die Lastspannung an die übergeordnete Steuerung übertragen. Durch einen parametrierbaren Grenzwert kann eine Warnschwelle generiert werden, welche dem Bediener auf sich ändernde Anlagenzustände hinweist.

Darüber hinaus besteht die neue Generation des elektronischen Überstromschutzes REX12D/REX22D aus dem intelligenten Einspeisemodul EM12D-TMB und den beliebig modular anreihbaren elektronischen Sicherungsautomaten REX12D und REX22D. Die jeweils nur 12,5 mm breiten Module sind komplett in Push-In Technologie inkl. Pusher ausgeführt und ermöglichen somit eine werkzeuglose, zeitsparende und wartungsfreie Verdrahtung. Das Einspeisemodul ist für DC 24 V und 40 A ausgelegt und nimmt für die Plus (+) Einspeisung max. 10 mm² mit Aderendhülse auf. Lastabgangsseitig lässt sich der Sicherungsautomat mit 2,5 mm² verdrahten.

Sie ist damit exakt auf die unterschiedlichen Anforderungen des Anwenders zugeschnitten. Zur elektrischen und mechanischen Verbindung der Einzelkomponenten bedarf es keines weiteren Zubehörs. Dies spart Kosten und Zeit!

2.1 Aufbau des Gesamtsystems

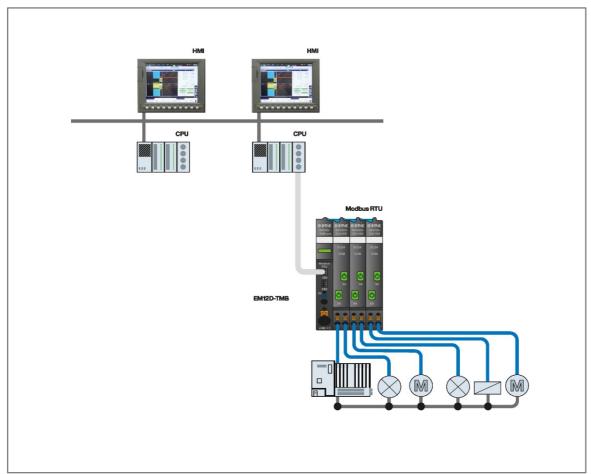


Abbildung 1: Systemübersicht

Das Zentrum des *ControlPlex*®-Systems bildet der Modbus Controller EM12D-TMB. Dieser Sammelt alle Informationen der elektronischen Sicherungsautomaten REX12D und REX22D ein und leitet diese an den übergeordneten Modbus Server und somit an die übergeordnete Steuerung weiter.

Die Modbus Schnittstelle zur überlagerten Steuerung ist mit einer 3-adrigenLeitung realisiert. Sie ermöglicht den Anschluss des *ControlPlex®*-Systems an den Modbus Server. Dadurch sind die Anzeige und Analyse der einzelnen Messwerte sowie die Diagnose und die Steuerung der einzelnen elektronischen Sicherungsautomaten möglich. Dem Anwender bietet dieses im Störungsfall einen uneingeschränkten Zugriff auf sicherheitsrelevante Funktionen. Auftretende Störungen werden zielgerichtet und schnell detektiert und können umgehend behoben werden. Das *ControlPlex®*-System verringert zielführend Anlagen Stillstandszeiten und erhöht die Produktivität signifikant.

2.2 Abmessungen des Buscontroller EM12D-TMB

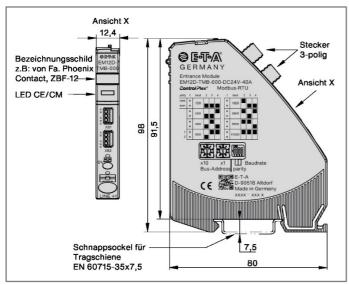


Abbildung 2: Abmessungen EM12D-TMB

2.3 Anzeigeelemente und Anschlüsse

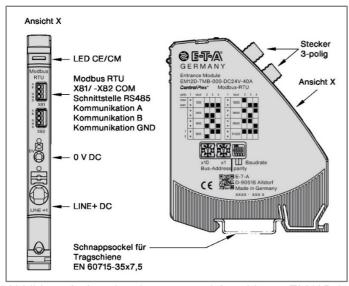


Abbildung 3: Anzeigeelemente und Anschlüsse EM12D-Leuchtdiode CE/CM

EM12D-Leuchtdiode CE/CM

Die Leuchtdiode CE/CM zeigt den Status der Kommunikationseinheit an. Die Anzeigemöglichkeit ist rot, grün und gelb/orange. Nähere Informationen entnehmen sie bitte der Abbildung 7: Darstellung der Betriebsarten.

3. MONTAGE UND INSTALLATION

3.1 Montage des Systems

Die bevorzugte Einbaulage des EM12D-TMB ist waagerecht.

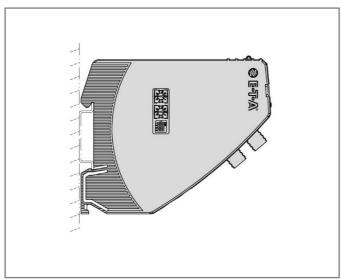


Abbildung 4: Einbaulage des EM12D-TMB

3.2 Stromversorgung des Modbus RTU Controllers

Der Modbus Controller wird nur über die Einspeiseanschlüsse LINE+ und 0V mit Spannung versorgt.

3.3 Anschlüsse für die Spannungsversorgung und den ELBus®

Die Betriebsspannung des Gerätes beträgt 24V DC. Der fehlerfreie Betrieb des Gerätes wird in einem Spannungsbereich von 18V bis 30V sichergestellt. Der maximale Strom des Einspeisemoduls beträgt 40A.

Die Verwendung einer Versorgungsspannung, welche nicht dem angegebenen Betriebsbereich entspricht, kann zu Fehlfunktionen beziehungsweise zur Zerstörung des Gerätes führen.

3.3.1 Anschlussbuchsen für die Modbus RTU Kommunikation, Anschlussbuchse X81/ X82

Diese Anschlussbuchsen dienen zur Verbindung des Modbus Controllers EM12D-TMB mit der übergeordneten Steuerung. Diese Verbindung ist eine Eins-zu-Eins Verdrahtung.

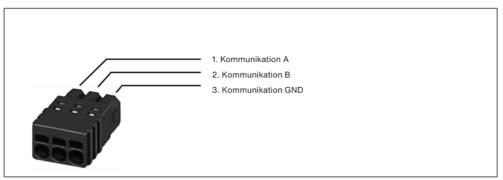


Abbildung 5: Modbus RTU Verbindung

Die Verbindung soll vorzugsweise mit einer dreipoligen geschirmten Leitung erfolgen. Die Leitungslange zwischen dem Modbus Controller EM12D-TMB und dem Modbus Server muss den Richtgroßen entsprechen.

Richtgröße:

Kabellänge der RS485 ca. 1200 m ca. 110 Ohm Kabellänge der RS485 ca. 600 m ca. 220 Ohm Kabellänge der RS485 ca. 300 m ca. 330 Ohm

Der Gebrauch der Anschlüsse, für die in der Bedienanleitung nicht vorgesehenen Anwendungen, oder ein nicht ordnungsgemäßer Anschluss kann zu Fehlfunktionen beziehungsweise zur Zerstörung des Gerätes führen.

3.3.2 Darstellungen des Fertigungsdatums, der Device ID und des Revisionsstands der Software

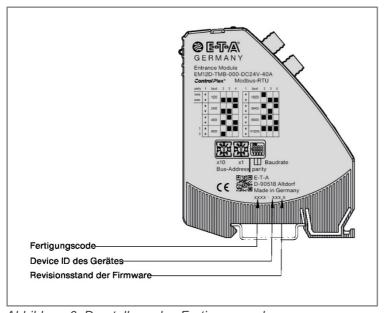


Abbildung 6: Darstellung des Fertigungscodes

4. BETRIEBSARTEN DES DEVICE EM12D-TMB

4.1 Betriebsart: Systemstart

Mit dem Anlegen der Versorgungsspannung wird der Modbus Controller initialisiert. Dabei führt das Gerät implementierte Programmspeichertests und Selbsttestroutinen durch. Während dieser Zeit ist eine Kommunikation über die Schnittstellen nicht möglich.

4.2 Betriebsart: Kritischer Fehler

Wurde bei den durchgeführten Selbsttestroutinen ein Fehler festgestellt, wechselt der Modbus Controller in die Betriebsart "Kritischer Fehler". Tritt ein kritischer Fehler ein, wechselt das Gerät ebenfalls in diese Betriebsart. Diese Betriebsart kann nur durch einen Neustart des Gerätes beendet werden und verhindert den Datenaustausch über die Schnittstellen. Befindet sich der Modbus Controller in dieser Betriebsart so ist keine Kommunikation mit der übergeordneten Steuerung möglich. Die elektronischen Sicherungsautomaten können nicht von diesem gesteuert werden und bleiben ausgeschaltet.

4.3 Betriebsart: Unkritischer Fehler

Befinden sich im Modbus Controller keine oder ungültige Konfigurationsdaten, so wechselt dieser in diese Betriebsart. Verlassen wird diese Betriebsart nachdem Erhalt von korrekten Modul- und Slot-Parametern und Konfigurationsdaten. Die Sicherungsautomaten bleiben ausgeschaltet.

4.4 Betriebsart: Unabhängiger Betrieb

Sollte nach Anlegen der Versorgungsspannung keine Verbindung zur überlagerten Steuerung erkannt werden, wechselt das Modul in die Betriebsart "unabhängiger Betrieb". Die Schutzschalter gehen in den Zustand, der durch die Konfiguration vorgegeben wurde. Besteht eine Verbindung zwischen dem Modbus Controller und der überlagerten Steuerung und steht kein kritischer Fehler an, wird die Betriebsart "Unabhängiger Betrieb" beendet. Sollte die Verbindung zwischen dem Modbus Controller zur überlagerten Steuerung während des Betriebs unterbrochen werden, wechselt der Modbus Controller automatisch in die Betriebsart "unabhängiger Betrieb".

Sollte die Verbindung zwischen dem Modbus Controller und der überlagerten Steuerung unterbrochen sein und der azyklische Parameter "UNFREEZE" gesetzt sein, werden alle Schutzschalter, vor dem Wechsel in die Betriebsart "Unabhängiger Betrieb", ausgeschaltet.

Sollte die Verbindung zwischen dem Modbus Controller und der überlagerten Steuerung unterbrochen sein und der azyklische Parameter "FREEZE" gesetzt sein, bleibt der Zustand der Schutzschalter, vor dem Wechsel in die Betriebsart "Unabhängiger Betrieb", unverändert.

Mit Hilfe eines azyklischen Parameters kann das Verhalten des Modbus Controllers bei der Unterbrechung der Kommunikation zur überlagerten Steuerung definiert werden.

Entweder wird der Zustand des Sicherungsautomaten eingefroren "FREEZE" oder alle Sicherungsautomaten werden ausgeschaltet "UNFREEZE".

Sollte die Verbindung zwischen dem Modbus Controller und der überlagerten Steuerung, nach einer vorhergegangenen Unterbrechung, wieder hergestellt werden, wird die Betriebsart "Unabhängiger Betrieb" beendet.

4.5 Betriebsart: Fehlerfreier Betrieb

Liegt kein kritischer sowie unkritischer Fehler vor und besteht Verbindung zur überlagerten Steuerung, wechselt der Modbus Controller in die Betriebsart "Fehlerfreier Betrieb". Die Parameter werden von der überlagerten Steuerung an den Modbus Controller übertragen und dort gespeichert. Anschließend werden diese an die elektronischen Sicherungsautomaten weitergeleitet. Die Steckplatzkonfigurationsdaten und die Steckplatzparameter werden über Modbus Register zwischen der überlagerten Steuerung und dem Modbus Controller ausgetauscht.

4.6 Betriebsart: Bootloader

Mit dem Tool *ControlPlex*® Views ist es möglich den Modbus Controller in den Bootloader Modus zu versetzen und eine neue Firmware einzuspielen.

Das Vorgehen wird in einem separaten Dokument beschrieben.

4.7 Signalisierung der verschiedenen Betriebsarten

Die unterschiedlichen Betriebsarten des Modbus Controllers werden wie folgt dargestellt:

Betriebsart	Signalisierung der Betriebsart	Modbus Kommunikation
	LED CE/CM	
Systemstart des Einspeisemoduls		Nicht definiert
Unabhängiger Betrieb	grün blinkend	Nicht vorhanden
Fehlerfreier Betrieb	grün	Vorhanden
Kritischer Fehler wurde erkannt	rot	Nicht vorhanden
Unkritischer Fehler wurde erkannt	gelb	Vorhanden
Unkritischer Fehler wurde erkannt	gelb blinkend	Nicht vorhanden
Bootloader aktiv	rot blinkend	Nicht vorhanden

Tabelle 1: Darstellung der Betriebsarten

4.8 Signalisierung der Betriebszustände am Sicherungsautomaten REX12D/REX22D

Die unterschiedlichen Betriebszustände eines Kanals des REX12D/REX22D werden wie folgt dargestellt:

Betriebszustand	Signalisierung LED	Zustand Lastausgang
Kanal durch Taster ausgeschaltet	dunkel	Aus
Kanal durch Taster eingeschaltet und über Kommunikation ausgeschaltet	orange	Aus

Kanal durch Taster und über Kommunikation eingeschaltet	grün	An
Gewählter Grenzwert überschritten	blinkt grün/orange	An
Überlast erkannt	orange	An
Auslösung durch Kurzschluss oder Überlast	rot	Aus
Unterspannung erkannt	rot	Aus

Tabelle 2: Signalisierung der Betriebszustände des REX12D/REX22D

5. GRUNDFUNKTIONALITÄTEN DES GESAMTSYSTEMS

5.1 Interne Zykluszeiten

Die Zykluszeit über den *ELBus*® beträgt 530ms. Im genannten Zeitraum werden der Status und der Laststrom jedes Sicherungsautomaten zyklisch an den Modbus Controller EM12D-TMB übertragen.

zyklische Werte 16x30 ms = 480 ms

nicht-zyklische Werte 130 ms

Abbildung 7: Zykluszeiten des Systems

5.2 Hot Swap der Sicherungsautomaten

Das Anreihen eines elektronischen Sicherungsautomaten REX12D/REX22D an ein Einspeisemodul bzw. an ein bestehendes System ist jederzeit möglich. Durch das Schließen des Verbindungsbügels ist die Spannungsversorgung des Gerätes gegeben. Ebenfalls wird das Gerät an den internen *ELBus*® angeschlossen.

Das Öffnen des Verbindungsbügels ist nur im ausgeschalteten Zustand zulässig. Das Öffnen unter Last kann zu Beschädigungen des Gerätes und zu nicht definierten Zuständen des Systems führen.

Nach dem An- bzw. Einfügen des Sicherungsautomaten wird dieser automatisch erkannt und sofern für diesen Steckplatz Parameter vorhanden sind, automatisch parametriert. Während diesem Verfahren werden die Zyklischen Daten für Kurzzeit als ungültig markiert.

6. KOMMUNIKATION ÜBER MODBUS RTU

6.1 ControlPlex® Controller Gerätemodell

Das EM12D-TMB besitzt eine interne *ELBus*®-Schnittstelle, mit der die Kommunikation zu den elektronischen Sicherungsautomaten REX12D und REX22D erfolgt. An das Einspeisemodul können bis zu 16 Kanäle der elektronischen Sicherungsautomaten vom Typ REX12D und REX22D (1-kanalig, mehr-kanalig oder eine Mischbestückung) angeschlossen werden.

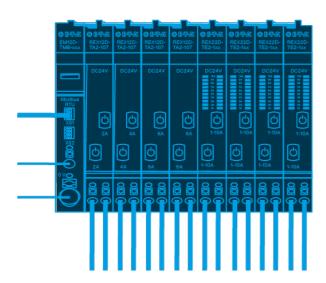


Abbildung 8: EM12D-TMB mit 16 Kanälen

6.1.1 Fehler bei falscher Bestückung

Sollte ein 2-Kanal Gerät als Kanal 16/17 angeschlossen werden, bekommt die Steuerung die Information, dass ein Gerät an Kanal 16 vorhanden ist.

Beim Auslesen der Cominfo des Schutzschalter bekommt man als Meldung, dass der Schutzschalter falsche Parameter hat.

Die Kanäle gehen nicht in Betrieb (lassen sich nicht einschalten).

6.1.2 Fehler Geräteadressierung

Auf Grund von mechanischen Problemen kann es zu Adressierungsfehlern kommen.

Die LED am EM12D-TMB leuchtet dauerhaft orange.

Mögliche Ursachen sind verbogene oder fehlende Kontakte im Verbindungsbügel.

Um das Gerät wieder in Betrieb zu nehmen, muss der Fehlerhafte Schutzschalter entfernt werden die Versorgungsspannung aus und wieder eingeschaltet werden.

6.2 Physikalische Schnittstelle

Die verwendete physikalische Schnittstelle ist RS485. Verwendet wir das Modbus RTU-Protokoll. Dieses ist unempfindlich gegen EMV-Störungen und ermöglicht eine einfache Umsetzung der Buskommunikation.

6.3 Einstellen der Kommunikationsparameter

Die Parameter zur Kommunikation zum Modbus-Server werden mit Hilfe der Schalter an der Geräteseite realisiert.

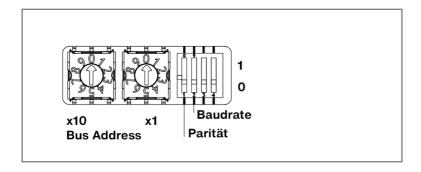


Abbildung 9: Einstellelemente für die Kommunikationsparameter

Mit Hilfe der Drehschalter wird die Adresse des Gerätes in der Busstruktur festgelegt. Dabei wird mit dem linken Drehschalter die Zehnerpotenz und mit dem rechten Drehschalter die Einer Potenz festgelegt.

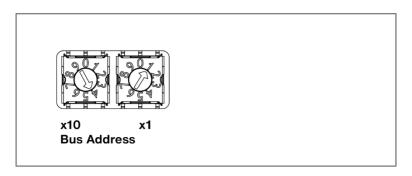


Abbildung 10: Einstellelemente für die Kommunikationsgeschwindigkeit

Im Beispiel wäre die Busadresse des Gerätes 41.

Die Kommunikationsgeschwindigkeit und das Paritätsbit werden mit den DIP-Schaltern auf der rechten Seite festgelegt. Die Definition der einzelnen Schalter kann der aufgedruckten Tabelle entnommen werden.

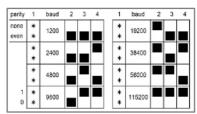


Abbildung 11: Darstellung der Kommunikationsgeschwindigkeit

Dabei legt man mit dem linken DIP-Schalter die Parität fest. Die Schalterstellung ist wie folgt definiert:

Abbildung 12: Schalterstellung der DIP-Schalter

Im gewählten Beispiel ist der DIP-Schalter in der Position "1" und das Paritätsbit ist auf "none" gesetzt. Die DIP-Schalter 2 / 3 / 4 definieren die Kommunikationsgeschwindigkeit.

Stoppbit

Es sind fest zwei Stoppbits definiert.

7. ÜBERBLICK DER MODBUS REGISTER

7.1 Spannung, Strom, Status und Steuerung der Kanäle

Diese Liste stellt die unterschiedlichen Informationen und die entsprechenden Register da.

Modbus Register	Funktionscode	Datenlänge	Schreiben/Le- sen	Faktor	Beschreibung
47001	3	2 Byte	read	100	Lastspannung F1
47002	3	2 Byte	read	100	Lastspannung F2
47003	3	2 Byte	read	100	Lastspannung F3
•					
47016		2 Byte	read	100	Lastspannung F16
47101		2 Byte	read	100	Laststrom F1
47102		2 Byte	read	100	Laststrom F2
47103		2 Byte	read	100	Laststrom F3
•					
47116		2 Byte	read	100	Laststrom F16
47200	3	2 Byte			Status Controller
47201	3	1 Byte	read		Status F1
47202	3	1 Byte	read		Status F2
47203	3	1 Byte	read		Status F3
•					
47216	3	1 Byte	read		Status F16
47301	6 & 16	2 Byte	write		Control F1
47302	6 & 16	1 Byte	write		Control F2
47303	6 & 16	1 Byte	write		Control F3
•					
47316	6 & 16	2 Byte	write		Control F16

Tabelle 3: Spannung, Strom, Status und Steuerung der Kanäle

7.2 Werte und Parameter je Kanal und des Einspeisemoduls

Diese Liste stellt die unterschiedlichen Informationen und die entsprechenden Register da.

Modbus Register	Funktionscode	Schreiben/Lesen	Faktor	Beschreibung
46001	6	write		System Befehle
46002	3	read		Diagnose Controller
46003	6 & 3	read/write		Konfig. Controller
46004	16 & 6 & 3	read/write		Kanäle 1-16 steuerbar
46005	16 & 6 & 3	read/write		Kanäle 17-32 steuerbar
46006	16 & 6 & 3	read/write		Kanäle 33-48 steuerbar
46007	3	read		Gerätetype
46008	3	read		Seriennummer
46009	3	reau		Senemummer
46010	3	read		Hardwareversion
46011	3	read		Softwareversion major.x.x
46012	3	read		Softwareversion x.minor.x
46013	3	read		Softwareversion x.x.build
460 (1429)	16 & 3	read/write		Application Specific Tag
40101	6 & 3	read/write		Nennstrom F1
40201	6 & 3	read/write		Nennstrom F2
40301	6 & 3	read/write		Nennstrom F3
•				
41601	6 & 3	read/write		Nennstrom F16
40102	6 & 3	read/write		Grenzwert Laststrom F1
40202	6 & 3	read/write		Grenzwert Laststrom F2
40302	6 & 3	read/write		Grenzwert Laststrom F3
•				
•				
41602	6 & 3	read/write		Grenzwert Laststrom F16
•	6 & 3	read/write		Grenzwert Laststrom F16
•	6 & 3 6 & 3	read/write read/write		Grenzwert Laststrom F16 Kanal Typ (Gerätetyp) F1
41602				

Modbus Register	Funktionscode	Schreiben/Lesen	Faktor	Beschreibung
•				
41609	6 & 3	read/write		Kanal Typ (Gerätetyp) F16
40110	3	read		Diagnose Kanal F1
40210	3	read		Diagnose Kanal F2
40310	3	read		Diagnose Kanal F3
•				
41610	3	read		Diagnose Kanal F16
40111	3	read		Fehlerspeicher F1
40211	3	read		Fehlerspeicher F2
40311	3	read		Fehlerspeicher F3
•				
41611	3	read		Fehlerspeicher F16
40112	3	read		Auslösezähler F1
40212	3	read		Auslösezähler F2
40312	3	read		Auslösezähler F3
•				
41612	3	read		Auslösezähler F16
40113	3	read		Auslösegrund F1
40213	3	read		Auslösegrund F2
40313	3	read		Auslösegrund F3
•				
41613	3	read		Auslösegrund F16
40116	3	read	100	Ø Lastspannung F1
40216	3	read	100	Ø Lastspannung F2
40316	3	read	100	Ø Lastspannung F3

Modbus Register	Funktionscode	Schreiben/Lesen	Faktor	Beschreibung
41616	3	read	100	Ø Lastspannung F16
40117	3	read	100	Max. Lastspannung F1
40217	3	read	100	Max. Lastspannung F2
40317	3	read	100	Max. Lastspannung F3
:				
41617	3	read	100	Max. Lastspannung F16
40118	3	read	100	Min. Lastspannung F1
40218	3	read	100	Min. Lastspannung F2
40318	3	read	100	Min. Lastspannung F3
•				
41618	3	read	100	Min. Lastspannung F16
40119	3	read	100	Ø Laststrom F1
40219	3	read	100	Ø Laststrom F2
40319	3	read	100	Ø Laststrom F3
•				
41619	3	read	100	Ø Laststrom F16
40120	3	read	100	Max. Laststrom F1
40220	3	read	100	Max. Laststrom F2
40320	3	read	100	Max. Laststrom F3
•				
41620	3	read	100	Max. Laststrom F16
40121	3	read	100	Min. Laststrom F1
40221	3	read	100	Min. Laststrom F2
40321	3	read	100	Min. Laststrom F3

Modbus Register	Funktionscode	Schreiben/Lesen	Faktor	Beschreibung
•				
41621	3	read	100	Min. Laststrom F16
40122	3	read		Gerätetyp F1
40222	3	read		Gerätetyp F2
40322	3	read		Gerätetyp F3
:				
41622	3	read		Gerätetyp F16
40123	3	read		Hardwareversion F1
40223	3	read		Hardwareversion F2
40323	3	read		Hardwareversion F3
•				
41623	3	read		Hardwareversion F16
40124	3	read		Softwareversion major.x.x F1
40224	3	read		Softwareversion major.x.x F2
40324	3	read		Softwareversion major.x.x F3
:				
41624	3	read		Softwareversion major.x.x F16
40125	3	read		Softwareversion minor.x.x F1
40225	3	read		Softwareversion minor.x.x F2
40325	3	read		Softwareversion minor.x.x F3
•				
41625	3	read		Softwareversion minor.x.x F16
40126	3	read		Softwareversion built F1
40226	3	read		Softwareversion built F2
40326	3	read		Softwareversion built F3

•		Beschreibung
•		
• 41626 3 rea	ad	Softwareversion built F16
40127 3 rea	ad	Seriennummer F1
40128 3 rea	ad	
40227 3 rea	ad	Seriennummer F2
40228 3 rea	ad	
40327 3 rea	ad	Seriennummer F3
40328 3 rea	ad	
•		
41627 3 rea	ad	Seriennummer F16
41628 3 rea	ad	
40129 6 wr	rite	Aktionsbefehl F1
40229 6 wr	rite	Aktionsbefehl F2
40329 6 wr	rite	Aktionsbefehl F3
•		
41629 6 wr	rite	Aktionsbefehl F16
45000 6 & 3 rea	ad/write	Historienspeicher Kanalnr.
45001 3 rea	ad	Historienspeicher Daten
•		
45400 3 rea	ad	Historienspeicher Daten

Tabelle 4: Werte und Parameter je Kanal und des Einspeisemoduls

7.3 Erläuterung der einzelnen Register, welche empfangen werden

7.3.1 Lastspannung Sicherungsautomat

Register 47001 – 47016 für Kanal 1-16, nur lesbar, Funktionscode 3.

Die Lastspannung wird für jeden elektronischen Sicherungsautomaten ermittelt und an das Schnittstellenmodul zyklisch übertragen.

Wertebereich: 0-65535 (entspricht 0,0 - 655,35 V)

Datenlänge: 1 Word

Die Lastspannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel: Messwert Lastspannung = 1025 → realer Messwert = 10,25 Volt.

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Byte (HIGH) Beschreibung	32768	16384	8192	Bit 12 4096	Bit 11 2048	1024	512	Bit 8 256

Tabelle 5: Lastspannung Sicherungsautomat

7.3.2 Laststrom Sicherungsautomat

Register 47101 – 47116 für Kanal 1-16, nur Lesbar, Funktionscode 3.

Der Laststrom wird für jeden elektronischen Sicherungsautomaten ermittelt und an das Schnittstellenmodul zyklisch übertragen.

Wertebereich: 0 - 65535 (entspricht 0.0 - 655.35 A)

Datenlänge: 1 Word

Der Laststrom wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt. Beispiel: Messwert Laststrom = 1025 → realer Messwert = 10,25 Ampere.

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Tabelle 6: Laststrom Sicherungsautomat

7.3.3 Status des Schnittstellenmoduls

Register 47200, nur Lesbar, Funktionscode 3.

Der Status des Schnittstellenmoduls wird ermittelt und der übergeordneten Steuerung zur Verfügung gestellt.

Wertebereich: 0 – 65535 Datenlänge: 1 Word

Wert [dez.]	Definition	Erklärung
0	DEVICE IS OPERATING PROPERLY	In allen anderen Fällen wird dieser Wert übertragen
1	MAINTENANCE REQUIRED	Dieser Wert wird übertragen falls einer von den Sicherungs- automaten wegen Kurzschluss oder Überlast ausgelöst hat
2	OUT OF SPECIFICATION	Dieser Wert wird übertragen falls einer von den Sicherungs- automaten eine Unterspannung detektiert hat
3	FUNCTIONAL CHECK	Nicht unterstützt
4	DEVICE FAILURE	Dieser Wert wird übertragen, falls einer von den angeschlossenen Sicherungsautomaten das Fehler-Bit im <i>ELBus</i> ® Device Status gesetzt hat.

Tabelle 7: Status des Schnittstellenmoduls

7.3.4 Status der Sicherungsautomaten

Register 47201 – 47216 für Kanal 1 - 16, nur lesbar, Funktionscode 3.

Der Status für jeden elektronischen Sicherungsautomaten wird an das Schnittstellenmodul zyklisch übertragen. Die einzelnen Statusinformationen sind in folgender Tabelle dargestellt.

Wertebereich: 0 – 65535 Datenlänge: 1 Word

Word	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Lastausgang (ein/aus)								0/1*
Kurzschluss							0/1*	
Überlast						0/1*		
Reserve					0/1*			
Reserve				0/1*				
Reserve			0/1*					
Grenzwert (erreicht / überschritten)		0/1*						
Hardware Lock (am Gerät selbst aus)	0/1*							
Word	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reserve								0/1*

Word	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Reserve							0/1*	
Reserve						0/1*		
Reserve					0/1*			
Reserve				0/1*				
Reserve			0/1*					
Reserve		0/1*						
Reserve	0/1*							

Tabelle 8: Status Sicherungsautomat

7.3.5 Steuern der Sicherungsautomaten

Register 47301 – 47316 für Kanal 1 - 16, beschreibbar, Funktionscode 6 und 16.

Es besteht die Möglichkeit von der übergeordneten Steuerung auf die Sicherungsautomaten zuzugreifen. Jeder Kanal eines jeden elektronischen Sicherungsautomaten kann ein/ausgeschaltet und zurückgesetzt werden. Das Ein- und Ausschalten ist nur möglich, wenn das entsprechende PLCLock Bit auf False gesetzt ist.

Wertebereich: 0 – 65535 Datenlänge: 1 Word

Word	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Lastausgang (ein/aus)								0/1*
Reset							0/1*	
Überlast						0/1*		
Reserve					0/1*			
Reserve				0/1*				
Reserve			0/1*					
Reserve		0/1*						
Reserve	0/1*							
Word	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reserve								0/1*
Reserve							0/1*	
Reserve						0/1*		

^{*} Status nicht gesetzt = 0 / Status gesetzt = 1

Word	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Reserve					0/1*			
Reserve				0/1*				
Reserve			0/1*					
Reserve		0/1*						
Reserve	0/1*							

Tabelle 9: Steuern der Sicherungsautomaten

7.3.6 System Befehle EM12D-TMB

Register 46001, beschreibbar, Funktionscode 6.

Abhängig vom übertragenen Wert wird eine der folgenden Funktionen ausgeführt.

7.3.6.1 Auf Werkseinstellungen zurücksetzen

Wird der Wert 130 in dieses Register geschrieben werden im Einspeisemodul die Standardparameter geladen.

7.3.6.2 Statistikinformationen zurücksetzen

Wird der Wert 250 in dieses Register geschrieben werden im Einspeisemodul die Statistikinformationen aller Kanäle zurückgesetzt. Ebenso ist es möglich diese Informationen kanalweise zurückzusetzen. Dieses wird im Kapitel der Aktionsbefehle beschrieben.

7.3.7 Diagnoseinformationen des intelligenten Schnittstellenmoduls EM12D-TMB

Register 46002, lesbar, Funktionscode 3.

Es werden die folgenden globalen Fehler und Diagnosemeldungen zurückgegeben. Die Auswertung erfolgt bitweise.

Wertebereich: 0 - 65535

Datenlänge: 1 Wort (Unsigned Integer)

Byte [0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
TN_SysNoConfig								0/1
TN_SysConfigMismatch							0/1	
						0/1		
					0/1			
TN_SysQueueFull				0/1				
			0/1					
		0/1						
TN_ELBusDown	0/1							

^{*} Status nicht gesetzt = 0 / Status gesetzt = 1

Byte [1]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
								0/1
TN_SysWatchdogReset							0/1	
TN_SysHardwareError						0/1		
(TN_SysBrownout) Span- nungsunterbrechung					0/1			
				0/1				
			0/1					
		0/1						
	0/1							

Tabelle 10: Diagnoseinformationen des intelligenten Schnittstellenmoduls EM12D-TMB

7.3.8 Konfigurationsdaten des intelligenten Einspeisemoduls EM12D-TMB

Register 46003, les- und schreibbar, Funktionscode 6 und 3.

Dieses Register enthält die Konfigurationsdaten für das intelligente Einspeisemodul EM12D-TMB. Die Auswertung erfolgt bitweise.

Wertebereich: Bit 0 - 15

Default-Wert: Energiesparmodus nicht aktiv, freeze aktiv

Datenlänge: 1 Wort (Unsigned Integer)

Byte [0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
								0/1
Offline-Verhalten (Unfreeze/Freeze)							0/1	
Energiesparmodus						0/1		
					0/1			
				0/1				
			0/1					
		0/1						
	0/1							
Byte [1]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
								0/1
							0/1	
						0/1		

Byte [1]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
					0/1			
				0/1				
			0/1					
		0/1						
	0/1							

Tabelle 11: Konfigurationsdaten des intelligenten Einspeisemoduls EM12D-TMB

Verhalten bei einer Kommunikationsunterbrechung:

Bit 1 Unfreeze = 0 alle Lastausgänge (Kanäle) der Sicherungsautomaten werden ausgeschaltet und das EM12D-TMB wechselt in die Betriebsart "Unabhängiger Betrieb".

Freeze = 1 alle Lastausgänge (Kanäle) der Sicherungsautomaten behalten ihren aktuellen Zustand und das EM12D-TMB wechselt in die Betriebsart "Unabhängiger Betrieb".

Bit 2 Energiesparmodus deaktiviert = 0

LED's haben immer volle Leuchtkraft

Energiesparmodus aktiviert = 1

LED's haben im Okay-Status eine reduzierte Leuchtkraft

7.3.9 Konfigurieren der Steuerbarkeit der Kanäle über PLCLock im EMD12D

Register 46004, les- und schreibbar, Funktionscode 3, 6 und 16.

Der Status PLCLock wird für alle möglichen 16 Kanäle über ein Wort zurückgemeldet. Wobei jeweils ein Bit den Status eines Kanals repräsentiert:

Wertebereich: Bit 0 - 15

Datenlänge: 1 Word (Unsigned Integer)

Byte [0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
PLCLock Kanal 1								0/1
PLCLock Kanal 2							0/1	
PLCLock Kanal 3						0/1		
PLCLock Kanal 4					0/1			
PLCLock Kanal 5				0/1				
PLCLock Kanal 6			0/1					
PLCLock Kanal 7		0/1						
PLCLock Kanal 8	0/1							
Byte [1]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
PLCLock Kanal 9								0/1
PLCLock Kanal 10							0/1	

Byte [1]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
PLCLock Kanal 11						0/1		
PLCLock Kanal 12					0/1			
PLCLock Kanal 13				0/1				
PLCLock Kanal 14			0/1					
PLCLock Kanal 15		0/1						
PLCLock Kanal 16	0/1							

Tabelle 12: Steuerbarkeit der Kanäle Konfigurieren PLCLock des Einspeisemoduls EM12D-TMB

Ein Setzen des Bits bedeutet, dass der Kanal nicht über die Steuerung ein- oder ausgeschalten werden kann. Das bedeutet, dass beim Einschalten der Versorgungsspannung am Ausgang des Kanals Spannung anliegt (vorausgesetzt der Kanal hatte vorher nicht ausgelöst).

7.3.10 Gerätetype des Einspeisemoduls EM12D-TMB

Register 46007, lesbar, Funktionscode 3.

Das Register enthält die Information über die Gerätetype des intelligenten Einspeisemodul EM12D-TMB.

Wertebereich: 0 – 65535 Datenlänge: 1 Word

Wert Gerätetyp
1 EM12D-TMB

7.3.11 Seriennummer EM12D-TMB

Register 46008 - 46009, lesbar, Funktionscode 3.

Diese beiden Register enthalten die Seriennummer des intelligenten Einspeisemodul EM12D-TMB.

Wertebereich: 0 - 4294967295

Datenlänge: 2 Word

Byte [1] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte [2]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Byte [3]	Bit 19	Bit 18	Bit 17	Bit 16
Beschreibung	524288	262144	131072	65536
Wert	0/1	0/1	0/1	0/1
Byte [3]	Bit 23	Bit 22	Bit 21	Bit 20
Byte [3] Beschreibung	Bit 23 8388608	Bit 22 4194304	Bit 21 2097152	Bit 20 1048576

Byte [4] (HIGH)	Bit 27	Bit 26	Bit 25	Bit 24
Beschreibung	134217728	67108864	33554432	16777216
Wert	0/1	0/1	0/1	0/1
Byte [4] (HIGH)	Bit 31	Bit 30	Bit 29	Bit 28
Byte [4] (HIGH) Beschreibung	Bit 31 2147483648	Bit 30 1073741824	Bit 29 536870912	Bit 28 268435456

Tabelle 13: Seriennummer EM12D-TMB

7.3.12 Hardwareversion EM12D-TMB

Register 46010, lesbar, Funktionscode e 3.

Das Register enthält die Hardwareversion des intelligenten Einspeisemodul EM12D-TMB.

Wertebereich: 0 – 65535 Datenlänge: 1 Word

7.3.13 Softwareversion EM12D-TMB

Register 46011 – 46013, lesbar, Funktionscode 3.

Die Register enthalten die Softwareversion des intelligenten Einspeisemodul EM12D-TMB

Wertebereich: major.minor.build

Datenlänge: 3 Word

	Beschreibung	Format	Register
	major.x.x	Word	x1
Software version	x.minor.x	Word	x2
	x.x.build	Word	x3

Tabelle 14: Softwareversion EM12D-TMB

7.3.14 Application Specific Tag EM12D-TMB

Register 46014 – 46029 für Kanal 1-16, beschreibbar, Funktionscode 3 und 16.

Hier kann ein Kundenspezifischer Text eingegeben werden. Der Text kann bis zu 32 Zeichen enthalten. Ein Register enthält zwei Zeichen.

Wertebereich: Text Datenlänge: 16 Word

7.3.15 Nennstrom REX12D/REX22D

Register 4(01...16)01 für Kanal 1-16, les- und schreibbar, Funktionscode 3 und 6.

Der Parameter gibt den Nennstrom des Kanals, abhängig vom Gerätetyp, in Ampere zurück. Dieser Wert ist lesoder auch schreibbar.

Wertebereich: 1-10 (ganzzahlig)

Default-Wert: -Datenlänge: 1 Word

7.3.16 Grenzwert Laststrom REX12D/REX22D

Register 4(01...16)02 für Kanal 1-16, les- und schreibbar, Funktionscode 3 und 6.

Der Parameter legt fest, bei wieviel Prozent des Nennstroms der Kanal "Grenzwert überschritten" meldet. Dieser Parameter ist schreib- und lesbar.

Wertebereich: 50 % – 100 % (ganzzahlig)

Default-Wert: 80 % Datenlänge: 1 Word

7.3.17 Kanaldiagnose REX12D/REX22D

Register 4 (01...16) 10 für Kanal 1-16, lesbar, Funktionscode 3.

Das Register enthält Diagnoseinformation zu dem angeschlossenen Kanal. Die Bedeutung der Werte kann der folgenden Tabelle entnommen werden.

Wertebereich: 0 – 255 Datenlänge: 1 Word

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Nicht unterstütztes Gerät ent- deckt. Es wurde ein nicht unter- stützter Sicherungs-automat in das System integriert	0	0	0	0	0	0	0	1
Die übertragenen Geräte Parameter wurden von dem Sicherungsautomat abgelehnt, weil sie außerhalb des gültigen Bereichs liegen.	1	0	0	1	0	0	0	0
Reserve	1	0	0	1	0	0	0	1

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Kanal gesperrt. Der Kanal wurde durch Betätigung des integrierten Tasters gesperrt und kann nicht durch das intelligente Einspeise- modul eingeschaltet werden.	1	0	0	1	0	0	1	0
Unterspannung erkannt. Die Betriebsspannung liegt unterhalb des sicheren Bereichs.	1	0	0	1	0	0	1	1
Reserve	1	0	0	1	0	1	0	0
Gerät hat ausgelöst. Es muss ein Rücksetzbefehl geschickt werden.	1	0	0	1	1	0	0	0
Kein Fehler.	0	0	0	0	0	0	0	0
Der Sicherungsautomat ist nicht parametriert.	1	0	0	1	0	1	1	1
Es wurde ein interner Gerätefehler erkannt.	1	0	0	1	1	0	0	0
Reserve	1	0	0	1	1	0	0	1
Reserve	1	0	0	1	1	0	1	1
Interner <i>ELBus</i> ® Fehler erkannt (temporäre Störung). Dieser Fehler kann durch starke EMV verursacht werden.	1	0	0	1	1	0	1	1
Reserve	1	0	0	1	1	1	0	0
Kein Gerät vorhanden.	0	0	0	0	0	0	1	0

Tabelle 15: Kanaldiagnose REX12D/REX22D

7.3.18 Fehlerspeicher REX12D/REX22D

Register 4(01...16)11 für Kanal 1 - 16, lesbar, Funktionscode 3.

Dieser Parameter enthält den internen Fehlerspeicher des Sicherungsautomaten.

Wertebereich: 0 – 255 Datenlänge: 1 Word

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Keine Parameter vorhanden								0/1*
Fehler Parameterspeicher							0/1*	
Fehler Programmspeicher						0/1*		

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Fehler Datenspeicher					0/1*			
Fehler Steuereinheit				0/1*				
Reset durch Watchdog aufgetreten			0/1*					
Reserve								
Reserve								

Tabelle 16: Fehlerspeicher REX12D/REX22D

7.3.19 Auslösezähler REX12D/REX22D

Register 4(01...16)12 für Kanal 1 - 16, lesbar, Funktionscode 3.

In diesem Parameter sind die Anzahl der bisher erfolgten Auslösungen hinterlegt. Jede Auslösung des Sicherungsautomaten wird gespeichert und aufaddiert. Dieses ermöglicht dem Servicepersonal einen genauen Überblick über die Anzahl der erfolgten Auslösungen.

7.3.20 Auslösegrund REX12D/REX22D

Register 4(01...16)13 für Kanal 1 - 16, lesbar, Funktionscode 3.

Der Parameter enthält den zuletzt aufgetretenen Auslösegrund des Kanals.

Wertebereich: 0, 1, 2, 4 Datenlänge: 1 Word

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Keine Auslösegrund vorhanden (0)	0	0	0	0	0	0	0	0
Kurzschluss (1)	0	0	0	0	0	0	0	1
Überlast (2)	0	0	0	0	0	0	1	0
Interner Gerätefehler (4)	0	0	0	0	0	1	0	0

Tabelle 17: Auslösegrund REX12D/REX22D

7.3.21 Mittelwert Spannung REX12D/REX22D

Register 4(01...16)16 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält den Mittelwert von der Spannung des Kanals seit dem letzten Reset.

Wertebereich: 0 – 65535 (entspricht 0,0 – 655,35 V)

Datenlänge: 1 Word

^{*} Fehler nicht vorhanden = 0 / Fehler vorhanden = 1

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert								0/1

Tabelle 18: Mittelwert Spannung REX12D/REX22D

Der Mittelwert der Spannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel: Messwert Betriebsspannung = 2512 -> realer Messwert = 25,12 Volt

7.3.22 Maximum Spannung REX12D/REX22D

Register 4(01...16)17 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält die höchste gemessene Spannung des Kanals seit dem letzten Reset.

Wertebereich: 0 - 65535 (entspricht 0,0 - 655,35 V)

Datenlänge: 1 Word

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Byte (HIGH) Beschreibung	32768	Bit 14 16384	Bit 13 8192	Bit 12 4096	Bit 11 2048	Bit 10 1024	Bit 9 512	Bit 8 256

Tabelle 19: Maximum Spannung REX12D/REX22D

Das Maximum der Spannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel: Messwert Betriebsspannung = 2512 -> realer Messwert = 25,12 Volt.

7.3.23 Minimum Spannung REX12D/REX22D

Register 4(01...16)18 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält die niedrigste gemessene Spannung des Kanals seit dem letzten Reset.

Wertebereich: 0 – 65535 (entspricht 0,0 – 655,35 V)

Datenlänge: 1 Word

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Tabelle 20: Minimum Spannung Kanal

Das Minimum der Spannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. Beispiel: Messwert Betriebsspannung = 2512 -> realer Messwert = 25,12 Volt

7.3.24 Mittelwert Strom REX12D/REX22D

Register 4(01...16)19 für Kanal 1-16, lesbar, Funktionscode 3.

Enthält den Mittelwert vom Strom des Kanals seit dem letzten Reset.

Wertebereich: 0 - 65535 (entspricht 0,0 - 655,35 A)

Datenlänge: 1 Word

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Tabelle 21: Mittelwert Strom Kanal

Der Mittelwert des Stroms wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt (Die Auflösung des Kanals ist eine Stelle hinter dem Komma, sie wird zur Vereinfachung Identisch der Spannung mit zwei Stellen ausgeführt).

Beispiel: Messwert Betriebsspannung = 710 -> realer Messwert = 7,10 Ampere.

7.3.25 Maximum Strom REX12D/REX22D

Register 4(01...16)20 für Kanal 1-16, lesbar, Funktionscode 3.

Enthält den höchsten Stromwert des Kanals seit dem letzten Reset.

Wertebereich: 0 – 65535 (entspricht 0,0 – 655,35 A)

Datenlänge: 1 Word

Byte [9] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte [10] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Tabelle 22: Maximum Strom Kanal

Das Maximum des Stroms wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt (Die Auflösung des Kanals ist eine Stelle hinter dem Komma, sie wird zur Vereinfachung Identisch der Spannung mit zwei Stellen ausgeführt).

Beispiel: Messwert Betriebsspannung = 710 -> realer Messwert = 7,10 Ampere.

7.3.26 Minimum Strom REX12D/REX22D

Register 4(01...16)21 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält den niedrigsten Stromwert des Kanals seit dem letzten Reset.

Wertebereich: 0 - 65535 (entspricht 0.0 - 655.35 A)

Datenlänge: 1 Word

Byte (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Byte (HIGH) Beschreibung	Bit 15 32768	Bit 14 16384	Bit 13 8192	Bit 12 4096	Bit 11 2048	Bit 10 1024	Bit 9 512	Bit 8 256

Tabelle 23: Minimum Strom Kanal

Das Minimum des Stroms wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt (Die Auflösung des Kanals ist eine Stelle hinter dem Komma, sie wird zur Vereinfachung Identisch der Spannung mit zwei Stellen ausgeführt).

Beispiel: Messwert Betriebsspannung = 710 -> realer Messwert = 7,10 Ampere.

7.3.27 Gerätetyp REX12D/REX22D

Register 4(01...16)22 für Kanal 1 - 16, lesbar, Funktionscode 3.

Der Parameter gibt an, um welches Gerät es sich handelt mit dem das Schnittstellenmodul kommuniziert. Das Wort enthält Information über den Gerätetyp des Sicherungsautomaten.

Wertebereich: 0 - 65535

Fehler: Gerätetyp nicht verfügbar (255)

Datenlänge: 1 Word

Typ REX12D

Byte [9]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
REX12D (144)	1	0	0	1	0	0	0	0

Byte [10]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
TA1-100 (9)	0	0	0	0	1	0	0	1
TA2-100 (10)	0	0	0	0	1	0	1	0
TE2-100 (14)	0	0	0	0	1	1	1	0
TE2-100-CL2 (46)	0	0	1	0	1	1	1	0
TB1-100 (41)	0	0	1	0	1	0	0	1
TA1-100-CL2 (73)	0	1	0	0	1	0	0	1
TB1-100-CL2 (105)	0	1	1	0	1	0	0	1
TA2-100-CL2 (42)	0	0	1	0	1	0	1	0
TE2-101 (78)	0	1	0	0	1	1	1	0
TE2-101-CL2 (110)	0	1	1	0	1	1	1	0
TA1-101 (137)	1	0	0	0	1	0	0	1
TA2-101 (74)	0	1	0	0	1	0	1	0
TB1-101 (169)	1	0	1	0	1	0	0	1
TA1-101-CL2 (201)	1	1	0	0	1	0	0	1
TB1-101-CL2 (233)	1	1	1	0	1	0	0	1
TA2-101-CL2 (106)	0	1	1	0	1	0	1	0

Tabelle 24: Geräteinformationen Kanal: Gerätetyp REX12D

Typ REX22D

Byte [9]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
REX22D (145)	1	0	0	1	0	0	0	1
Byte [10]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
TD2-100-CL2 (10)	0	0	0	0	1	0	1	0
TD2-100 (42)	0	0	1	0	1	0	1	0
TD1-100 (9)	0	0	0	0	1	0	0	1
TA1-100 (41)	0	0	1	0	1	0	0	1

Byte [10]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TE2-100 (14)	0	0	0	0	1	1	1	0
TE2-100-CL2 (46)	0	0	1	0	1	1	1	0
TD2-101-CL2 (74)	0	1	0	0	1	0	1	0
TD2-101 (106)	0	1	1	0	1	0	1	0
TD1-101 (73)	0	1	0	0	1	0	0	1
TA1-101 (105)	0	1	1	0	1	0	0	1
TE2-101 (78)	0	1	0	0	1	1	1	0
TE2-101-CL2 (110)	0	1	1	0	1	1	1	0
TE1-100 (13)	0	0	0	0	1	1	0	1
TE1-101 (45)	0	0	1	0	1	1	0	1

Tabelle 25: Geräteinformationen Kanal: Gerätetyp REX22D

7.3.28 Hardwareversion REX12D/REX22D

Register 4(01...16)23 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält die Hardwareversion des entsprechenden Kanals. Die Hardwareversion wird als ganzzahlige Nummer zur Verfügung gestellt.

Wertebereich: 0 - 65535

Fehler: Hardwareversion nicht verfügbar (65535)

Datenlänge: 1 Word

Byte [7] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte [8] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Describing	02100	10004	0102	4000	2040	102-1	012	200

Tabelle 26: Geräteinformationen Kanal: Hardwareversion

7.3.29 Softwareversion REX12D/REX22D

Register 4(01...16)24 - 4(01...16)26 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält die Softwareversion des entsprechenden Kanals. Die Softwareversion wird codiert zur Verfügung gestellt. Sie ist folgendermaßen codiert:

Wertebereich: major.minor.build

Datenlänge: 3 Word

	Beschreibung	Format	Register
	major.x.x	Word	x24
Software version	x.minor.x	Word	x25
	x.x.build	Word	x26

Tabelle 27: Geräteinformationen Kanal: Softwareversion

7.3.30 Seriennummer REX12D/REX22D

Register 4(01...16)27 - 4(01...16)28 für Kanal 1 - 16, lesbar, Funktionscode 3.

Enthält die Seriennummer des entsprechenden Kanals.

Wertebereich: 0 - 4294967295

Fehler: Seriennummer nicht verfügbar (4294967295)

Datenlänge: 2 Word

Byte [1] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte [2]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Byte [3]	Bit 19	Bit 18	Bit 17	Bit 16
Beschreibung	524288	262144	131072	65536
Wert	0/1	0/1	0/1	0/1
Byte [3]	Bit 23	Bit 22	Bit 21	Bit 20
Byte [3] Beschreibung	Bit 23 8388608	Bit 22 4194304	Bit 21 2097152	Bit 20 1048576

Byte [4] (HIGH)	Bit 27	Bit 26	Bit 25	Bit 24
Beschreibung	134217728	67108864	33554432	16777216
Wert	0/1	0/1	0/1	0/1
Byte [4] (HIGH)	Bit 31	Bit 30	Bit 29	Bit 28
	BILSI	DIL 30	DIL 29	DIL ZO
Beschreibung	2147483648	1073741824	536870912	268435456

Tabelle 28: Geräteinformationen Kanal: Seriennummer

7.3.31 Aktionsbefehle Kanal REX12D/REX22D

Register 4(01...16)29 für Kanal 1 - 16, lesbar, Funktionscode 6.

Es wird ein Byte übertragen, das je nach Wert folgende Funktionen ausführt.

Wertebereich: 115 – 120

Datenlänge: 1 Byte (Unsigned Character)

Byte [1]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Fehlerspeicher rücksetzen (115)	0	1	1	1	0	0	1	1
Auslösezähler rücksetzen (116)	0	1	1	1	0	1	0	0
Minimum Statistik rücksetzen (117)	0	1	1	1	0	1	0	1
Maximum Statistik rücksetzen (118)	0	1	1	1	0	1	1	0
Mittelwert Statistik rücksetzen (119)	0	1	1	1	0	1	1	1
Alle Statistikwerte rücksetzen (120)	0	1	1	1	1	0	0	0

Tabelle 29: Aktionsbefehle Kanal REX12D

8. ANHANG

o. i Abbilduligsveizelcillis	
Abbildung 1: Systemübersicht	
Abbildung 2: Abmessungen EM12D-TMB	7
Abbildung 3: Anzeigeelemente und Anschlüsse EM12D-Leuchtdiode CE/CM	7
Abbildung 4: Einbaulage des EM12D-TMB	8
Abbildung 5: Modbus RTU Verbindung	9
Abbildung 6: Darstellung des Fertigungscodes	9
Abbildung 7: Zykluszeiten des Systems	13
Abbildung 8: EM12D-TMB mit 16 Kanälen	14
Abbildung 9: Einstellelemente für die Kommunikationsparameter	15
Abbildung 10: Einstellelemente für die Kommunikationsgeschwindigkeit	15
Abbildung 11: Darstellung der Kommunikationsgeschwindigkeit	16
Abbildung 12: Schalterstellung der DIP-Schalter	16
8.2 Tabellenverzeichnis	
Tabelle 1: Darstellung der Betriebsarten	
Tabelle 2: Signalisierung der Betriebszustände des REX12D/REX22D	
Tabelle 3: Spannung, Strom, Status und Steuerung der Kanäle	
Tabelle 4: Werte und Parameter je Kanal und des Einspeisemoduls	
Tabelle 5: Lastspannung Sicherungsautomat	
Tabelle 6: Laststrom Sicherungsautomat	
Tabelle 7: Status des Schnittstellenmoduls	
Tabelle 8: Status Sicherungsautomat	
Tabelle 9: Steuern der Sicherungsautomaten	26
Tabelle 10: Diagnoseinformationen des intelligenten Schnittstellenmoduls EM12D-TMB	
Tabelle 11: Konfigurationsdaten des intelligenten Einspeisemoduls EM12D-TMB	28
Tabelle 12: Steuerbarkeit der Kanäle Konfigurieren PLCLock des Einspeisemoduls EM12D-TMB	29
Tabelle 13: Seriennummer EM12D-TMB	30
Tabelle 14: Softwareversion EM12D-TMB	30
Tabelle 15: Kanaldiagnose REX12D/REX22D	
Tabelle 16: Fehlerspeicher REX12D/REX22D	33
Tabelle 17: Auslösegrund REX12D/REX22D	33
Tabelle 18: Mittelwert Spannung REX12D/REX22D	34
Tabelle 19: Maximum Spannung REX12D/REX22D	34
Tabelle 20: Minimum Spannung Kanal	
Tabelle 21: Mittelwert Strom Kanal	35
Tabelle 22: Maximum Strom Kanal	
Tabelle 23: Minimum Strom Kanal	
Tabelle 24: Geräteinformationen Kanal: Gerätetyp REX12D	
Tabelle 25: Geräteinformationen Kanal: Gerätetyp REX22D	
×1	

Tabelle 26:	Geräteinformationen Kanal: Hardwareversion	38
Tabelle 27:	Geräteinformationen Kanal: Softwareversion	39
Tabelle 28:	Geräteinformationen Kanal: Seriennummer	39
Tabelle 29:	Aktionsbefehle Kanal REX12D.	40

E-T-A Elektrotechnische Apparate GmbH

Industriestraße 2-8 90518 Altdorf Tel. +49 9187 10-0 Fax +49 9187 10-397 E-Mail: info@e-t-a.de